Oldage protein may cause memory loss

first_imgThe next time you forget where you left your car keys, you might be able blame an immune protein that builds up in your blood as you age. The protein impairs the formation of new brain cells and contributes to age-related memory loss—at least in mice, according to a new study. Blocking it could help prevent run-of-the-mill memory decline or treat cognitive disorders, the researchers say.“The findings are really exciting,” says neurologist Dena Dubal of the University of California, San Francisco (UCSF), who was not involved in the study. “The importance of this work cannot be underestimated as the world’s population is aging rapidly.”Multiple groups of scientists have shown that adding the blood of older mice to younger animals’ bodies makes them sluggish, weaker, and more forgetful. Likewise, young blood can restore the memory and energy of older mice. Neuroscientist Saul Villeda of UCSF homed in on one actor he thought might be responsible for some of that effect: β2 microglobulin (B2M), an immune protein normally involved in distinguishing one’s own cells from invading pathogens. B2M has also been found at increased levels in patients with Alzheimer’s disease and other cognitive disorders. Click to view the privacy policy. Required fields are indicated by an asterisk (*) Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Emailcenter_img Sign up for our daily newsletter Get more great content like this delivered right to you! Country Villeda and his colleagues first measured B2M levels in the blood of both people and mice of different ages; they found that those levels increased with age. When the researchers injected B2M into 3-month-old mice, the young animals suddenly had trouble remembering how to complete a water maze, making more than twice as many errors after they’d already been trained to navigate the maze. Moreover, their brains had fewer new neurons than other mice. Thirty days later, however, when the protein had been cleared from their bodies, the animals’ memory troubles were gone as well, and the number of newly formed brain cells was back to normal.To see whether reducing B2M levels could treat or prevent memory impairment as the rodents aged, Villeda’s group genetically engineered mice to lack the gene for B2M. Compared to control mice, older animals with no B2M were better at learning and memory tasks, nearly as good as young animals at completing the water maze, for instance, the scientists report online today in Nature Medicine. They got similar results when they engineered mice to lack another immune molecule, suggesting that B2M is part of a pathway that affects the brain.“What this shows is that you can manipulate the blood, rather than the brain, to potentially treat memory problems,” Villeda says. “And that’s so much easier and more tractable in terms of thinking of human patients.”The study is a solid confirmation of previous papers that showed B2M’s important role in aging and memory, says biologist Irina Conboy of the University of California, Berkeley, who recently published a scientific paper showing that targeting a separate molecule can lower levels of B2M and restore brain cell formation. The real test, Conboy says, will come in clinical trials that aim to block B2M—or other related molecules—to treat or prevent memory disorders in humans.“In my opinion, age is just a number, and it’s not a chronological number of years, but a number representing the strength of signaling pathways within cells,” Conboy says. “Which means we can start with an old cell, change its signaling, and make it behave like new again.”last_img read more